NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages.

TitleNADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages.
Publication TypeJournal Article
Year of Publication2018
AuthorsBagaitkar J, Huang J, Zeng MY, Pech NK, Monlish DA, Perez-Zapata LJ, Miralda I, Schuettpelz LG, Dinauer MC
Date Published2018 05 24
KeywordsAnimals, Apoptosis, CD11b Antigen, Enzyme Activation, Macrophages, Mice, Mice, Knockout, Myeloid Differentiation Factor 88, NADPH Oxidases, Neutrophils, Peroxidase, Phagocytosis, Proteolysis, Reactive Oxygen Species, Toll-Like Receptor 2, Toll-Like Receptor 4

The phagocyte reduced NAD phosphate (NADPH) oxidase generates superoxide, the precursor to reactive oxygen species (ROS) that has both antimicrobial and immunoregulatory functions. Inactivating mutations in NADPH oxidase alleles cause chronic granulomatous disease (CGD), characterized by enhanced susceptibility to life-threatening microbial infections and inflammatory disorders; hypomorphic NADPH oxidase alleles are associated with autoimmunity. Impaired apoptotic cell (AC) clearance is implicated as an important contributing factor in chronic inflammation and autoimmunity, but the role of NADPH oxidase-derived ROS in this process is incompletely understood. Here, we demonstrate that phagocytosis of AC (efferocytosis) potently activated NADPH oxidase in mouse peritoneal exudate macrophages (PEMs). ROS generation was dependent on macrophage CD11b, Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response 88 (MyD88), and was also regulated by phosphatidylinositol 3-phosphate binding to the p40 oxidase subunit. Maturation of efferosomes containing apoptotic neutrophils was significantly delayed in CGD PEMs, including acidification and acquisition of proteolytic activity, and was associated with slower digestion of apoptotic neutrophil proteins. Treatment of wild-type macrophages with the vacuolar-type H+ ATPase inhibitor bafilomycin also delayed proteolysis within efferosomes, showing that luminal acidification was essential for efficient digestion of efferosome proteins. Finally, cross-presentation of AC-associated antigens by CGD PEMs to CD8 T cells was increased. These studies unravel a key role for the NADPH oxidase in the disposal of ACs by inflammatory macrophages. The oxidants generated promote efferosome maturation and acidification that facilitate the degradation of ingested ACs.

Custom 1

Alternate JournalBlood
PubMed ID29618478
PubMed Central IDPMC5969376
Grant ListR01 HL045635 / HL / NHLBI NIH HHS / United States
R01 HL134896 / HL / NHLBI NIH HHS / United States
T32 AI060519 / AI / NIAID NIH HHS / United States

Weill Cornell Medicine Gale and Ira Drukier Institute for Children's Health 413 E. 69th Street New York, NY 10021